Oscillation and nonoscillation of forced second order dynamic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation and Nonoscillation of Forced Second Order Dynamic Equations

Oscillation and nonoscillation properties of second order Sturm–Liouville dynamic equations on time scales attracted much interest. These equations include, as special cases, second order self-adjoint differential equations as well as second order Sturm–Liouville difference equations. In this paper we consider a given (homogeneous) equation and a corresponding equation with forcing term. We giv...

متن کامل

On oscillation and nonoscillation of second-order dynamic equations

New oscillation and nonoscillation criteria are established for second order linear equations with damping and forcing terms. Examples are given to illustrate the results.

متن کامل

Oscillation of Forced Second Order Dynamic Equations on Time Scales

In this paper, by introducing a nonnegative kernel function H(t, s), some oscillation criteria for a forced second-order dynamic equation on time scales are given. AMS Subject Classifications: 34K11, 34C10, 93C70.

متن کامل

Oscillation and Nonoscillation Criteria for Second-order Linear Differential Equations

Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...

متن کامل

Nonoscillation of Second-Order Dynamic Equations with Several Delays

and Applied Analysis 3 In 10 , Leighton proved the following well-known oscillation test for 1.4 ; see 10, 11 . Theorem A see 10 . Assume that ∫∞ t0 1 A0 ( η )dη ∞, ∫∞ t0 A1 ( η ) dη ∞, 1.5 then 1.3 is oscillatory. This result for 1.4 was obtained by Wintner in 12 without imposing any sign condition on the coefficient A1. In 13 , Kneser proved the following result. Theorem B see 13 . Equation 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2007

ISSN: 0030-8730

DOI: 10.2140/pjm.2007.230.59